skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Du, Huifeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Materials processing and additive manufacturing afford exciting opportunities in biomedical research, including the study of cell-material interactions. However, some of the most efficient materials for microfabrication are not wholly suitable for biological applications, require extensive post-processing or exhibit high mechanical stiffness that limits the range of applications. Conversely, materials exhibiting high cytocompatibility and low stiffness require long processing times with typically decreased spatial resolution of features. Here, we investigated the use of hexanediol diacrylate (HDDA), a classic and efficient polymer for stereolithography, for oligodendrocyte progenitor cell (OPC) culture. We developed composite HDDA-polyethylene glycol acrylate hydrogels that exhibited high biocompatibility, mechanical stiffness in the range of muscle tissue, and high printing efficiency at ∼5 μm resolution. 
    more » « less
  2. Metamaterials have offered unprecedented potentials for wave manipulations. However, their applications in underwater acoustic wave control have remained largely unexplored. This is because of the limited material choices and the lack of reliable fabrication techniques for the complicated structures. Herein, a metamaterial with microlattice structures as the building blocks is proposed for underwater operations. By designing the building blocks of the metamaterial and assembling them in a layered fashion, anisotropy is embedded in the structure, which results along different effective sound speeds in orthogonal directions. The designed metamaterial is fabricated by metal additive manufacturing using aluminum and steel. Experiments are performed using a resonator tube to evaluate its performance in water. An anisotropy ratio of around 2 is achieved, which is in good agreement with numerical simulations. The proposed metamaterial provides an effective means for underwater sound control with reduced fabrication difficulties and increased service life. 
    more » « less